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FOREWORD

This report documents the results from six crash tests between
1997 Geo Metro two-door hatchbacks and the FOIL 300K rigid pole.
The Federal Highway Administration (FHWA) has invested many
regources in the development of finite element models (FEM) of
passenger vehicles, pickup trucks, and roadside safety hardware.
Computer simulations using these FEMs of collisions between the
vehicles and roadside safety hardware are used to investigate the
behavior of and improve the safety performance of roadside safety
hardware. An essential step for developing the FEM is to
validate the models by comparing data from simulation output with
data collected from full-scale vehicle crash tests with roadside
safety hardware. The FHWA’'s Federal Outdoor Impact Laboratory
(FOIL) was used to conduct these five frontal-collision and one
broadside collision rigid pole tests. The data from these tests
will be used to develop and validate FEM of the Geo Metro. The
nominal test speed for each test was 35 km/h and the nominal test
weight of each vehicle was 820 kg.

This report (FHWA-RD-01-047) contains test data, photographs
taken with high-speed film, and a summary of the test results.

This report will be of interest to all State departments of
transportation; FHWA headquarters; region and division personnel;
and highway safety researchers interested in the crashworthiness
of roadside safety hardware.

Wik ZAKo foutite

Michael Trentacoste, Director
Office of Safety and Traffic
Operations Research and Development

NOTICE

This document is disseminated under the sponsorship of the
Department of Transportation in the interest of information
exchange. The United States Government assumes no liability for
its contents or use thereof. This report does not constitute a
standard, specification, or regulation.

The United States Government does not endorse products or
manufacturers. Trade and manufacturers' names appear in this
report only because they are considered essential to the object
of the document.
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INTRODUCTION

The Federal Highway Administration (FHWA) has invested many
resources in the development of finite element models (FEM) of
passenger vehicles, pickup trucks, and roadside safety hardware.
Computer simulations using these FEMs of collisions between the
vehicles and roadside safety hardware are used to investigate the
behavior of and improve the safety performance of roadside safety
hardware. An essential step for developing the FEM is to
validate the vehicle models by comparing data from simulation
output with data collected from full-scale vehicle crash tests.

The following report outlines the test procedures and test
results from a series of six crash tests conducted at the Federal
Outdoor Impact Laboratory (FOIL) located at the Turner-Fairbank
Highway Research Center (TFHRC) in McLean, Virginia. Each of the
six tests involved a 1997 Geo Metro striking the FOIL
instrumented rigid pole. The vehicles collided with the rigid
pole in either a frontal or broadside orientation. The rigid
pole was used to ensure that the total initial energy was
consumed by vehicle deformation. The vehicles used for this
study were 1997 Geo Metro LSi two-door coupes (4-cylinder model)
which is the recommended 820C test vehicle described in the
National Cooperative Highway Research Program Report 350 (NCHRP
Report 350) ™. The nominal vehicle weight (820 kg) and initial
velocity (35 km/h) were held constant for each test. Five
frontal impacts and one broadside collision were conducted. The
impact location along the vehicles’ front end was changed for
each of the five frontal tests. This was done to obtain crush
profile data at various locations across the vehicle front end.
The objectives of these tests were to:

J Provide electronic data, high-speed film coverage, and
analysis from full-scale vehicle collisions to the FEM
community (specifically the NCAC) to aid in the development
and validation of a Geo Metro FEM. Both a frontal and
broadside FEM will be validated with the data collected
during these tests.

J Collect baseline frontal crush profile or characteristic
data to be used to develop a new crushable honeycomb nose
for the FOIL breakaway bogie vehicle. The current honeycomb
nose was developed to replicate the crush characteristics of
a 1979 Volkswagen Rabbit’s front left quarter point.

Vehicle crush characteristic data plots for each impact
location and data plots generated from each sensor output are
presented in Appendix C. Vehicle crush characteristic properties
are presented as graphs of force vs. displacement, energy vs.
displacement, peak force vs. delta velocity, and displacement vs.
time. These plots profile the stiffness of the vehicle at a
given impact location. In addition to the crush profile data

1






plots, data plots from each sensor affixed to the test vehicles
and rigid pole are included. The sensor data plots include but
are not limited to acceleration vs. time, force vs. time, and
velocity vs. time. The data plots were generated from vehicle
center-of-gravity (c.g.) accelerometer data, rigid pole load cell
data, and vehicle component (engine, caliper, etc.) accelerometer
data.

MATRIX

Five frontal collisions and one broadside collision between
a Geo Metro and the FOIL rigid pole were conducted. The five
frontal-impact tests provided crush characteristic data for five
different locations along the Geo Metro front end. One broadside
crash test provided side crush profile data at one specific
location. The crash tests were conducted by accelerating the Geo
Metros to a target speed of 35 km/h prior to striking the FOIL
rigid pole. The target weight of the Geo Metros was 820 kg. A
dummy was not used for this test program. Table 1 outlines the
matrix for the six Geo Metro tests.

Table 1. Test matrix for Geo Metro crash tests.

Test Target | Target Test Vehicle impact
number |[weight | speed device location/angle
98F010 {820 kg |35 km/h Rigid Left hard point, 470 mm
' pole left of center / 0°
98F011 {820 kg |35 km/h Rigid Midway between vehicle
pole center and left hard pt.,
230 mm left of center /0°
98F012 | 820 kg |35 km/h Rigid Vehicle center / 0°
' pole
98F014 |820 kg |35 km/h Rigid Midway between vehicle
pole center and right hard pt.,
230 mm right of center /0°
98F015 | 820 kg |35 km/h Rigid Right hard point, 470 mm
pole right of center / 0°
9958001 |[820 kg {35 km/h Rigid Broadside, mid-door 1,060
pole mm behind front axle / 90°
VEHICLE

The test vehicles used were 1997 Geo Metro LSi two-door
hatch backs with automatic transmissions. Prior to each test
each vehicle was drained of all fluids and its curb weight
recorded. The vehicle’s inertial properties were then measured






using the FOIL inertial measurement device (IMD).
were stripped of certain components (spare tire,
shifter linkage, etc.) and instrumented with data acquisition
The final
vehicle test weight was determined and the vehicle’s inertial
properties were measured a second time as instrumented.
target vehicle test weight for each vehicle was 820 kg.
components were removed from the vehicle’s engine compartment. A
dummy was not used for this test program.

equipment,

test wvehicles’
sketches of the vehicles’ physical parameters.

sensors, and vehicle guidance equipment.

The vehicles
rear seat,

The
No

Table 2 summarizes the
inertial properties and figures 1 through 6 are
Figure 7 is a

sketch of a typical Geo Metro engine compartment depicting the
location of significant substructures (frame, battery, engine

block, etc.) and includes each target impact location (frontal
only). Figure 8 illustrates an overhead view of the Geo Metro.
Table 2. Inertial properties of 1997 Geo Metro.
Test Weight Height | Long.cg | Pitch | Roll Yaw Bumper | Wheel
Number (kg)} (mm) * *%  (mm) kgem? | kgem? | kgem? Height | Base
(mm) {(m)
Curb Weight Configuration
98F010 819 547 842 944 250 1,122 457 2.4
98F011 820 542 843 1,016 235 1,125 457 2.4
98F012 825 540 843 1,019 234 1,122 457 2.4
98F014 820 541 840 977 199 1,145 457 2.4
98F015 823 531 842 968 265 1,089 457 2.4
995001 820 552 ' 845 996 214 1,135 457 2.4
Test Configuration
98F010 830 540 830 825 230 1,125 457 2.4
98F011 832 540 832 971 233 1,082 457 2.4
98F012 837 544 855 1,054 209 1,145 457 2.4
98F014 831 540 842 o987 193 1,142 457 2.4
98F015 834 528 830 998 247 1,089 457 2.4
9958001 820 537 859 088 203 1,059 457 2.4
* Height of vehicle center-of-gravity.
*%* Longiltudinal center-of-gravity, distance behind front axle.

RIGID POLE TEST DEVICE

The rigid pole was designed to record vehicle crush
characteristic data for both frontal and broadside collisions.
The rigid pole was installed on the FOIL runway with the pole







centerline aligned with the appropriate vehicle impact location.
For five tests, the rigid pole was configured in the frontal
impact configuration consisting of a 305-mm-diameter solid semi-
circular steel impact face attached to two 890-kN load cells.
The broadside test configuration of the rigid pole consisted of
four 255-mm diameter solid steel impact faces. Each face was
attached to two load cells (eight load cells total). Due to the
vehicles’ low roof height, the top two load cells (top impact
face) were not used during the broadside test. The frontal and
side impact configurations of the rigid pole are shown in figures
9 and 10, respectively. '






DATE: 9-30-98 TEST NO: S8F010 TIRE PRESSURE: 35 psi MAKE: GEO

MODEL: METRO YEAR: 1997 ODOMETER: 33,000 GVW: 832

TIRE SIZE: VIN NUMBER: 2C1IMR2294V6730262 TREAD TYPE:

MASS DISTRIBUTION: CURB: LF 263 LF 264 LR 147 RR 145
TEST INERTIAL: LF 268 RF 265 LR 150 RR, 148

DESCRIBE ANY DAMAGE TO VEHICLE PRIOR TO TEST:

NONE
f“% mh
r ——C ) S = } ENGINE TYPE: 1.3L 4 CYL.
N WL @ NEHQE o weL ENGINE CID:
TRACK CENTERUNE TRACK
‘ . 1 TRANSMISSION TYPE:
A C g\l =
2 ¢ | , X_AUTO

) 7
=3 EILJ MANUAL
OPTIONAL EQUIPMENT :

AIR CONDITIONING

TREDA - P 11/ D Radio
WHERL DA a P
L F/«””A4 oD DUMMY DATA:
ﬁ i-_1:<gfﬁ_J//;::§ \ f_ﬂ_/) /:> L\___}—Eb | TYPE:____N.A
l fu Qﬁ: / s ; MASS: _ N.A.
} B ¢ E SEAT POSITION: N.A.
My v M3
F
GEOMETRY
A__1525 E 591 J__679 N__ 1385 R
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Figure 1. Vehicle properties for test 98F010.






DATE: __10-13-98 TEST NO: 98F011 TIRE PRESSURE: 35 psi MAKE : GEO

MODEL: ___ METRO YEAR: 1997 ODOMETER : 33,000 GVW: 832

TIRE SIZE: VIN NUMBER: 2CIMR2296V6702091 TREAD TYDE:

MASS DISTRIBUTION: CURB: LF 269 LF 259 LR 148 RR 145
TEST INERTIAL: LF 274 RF 258 LR 152 RR 148

DESCRIBE ANY DAMAGE TO VEHICLE PRIOR TO TEST:
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Figure 2. Vehicle

1 psi = 6.89 kPa

properties for test 98F011.






DATE: 10-26-98 TEST NO: 98F012 TIRE PRESSURE: 35 psi MAKE : GEO

MODEL:___ METRO YEAR: 1997 ODOMETER : 33,000 GVW: 827

TIRE SIZE: VIN NUMBER: 2C1MR2294V6750060 TREAD TYPE:

MASS DISTRIBUTION: CURB: LF 271 LF 260 LR 147 RR 147
TEST INERTIAL: LF 269 RF 266 LR 152 RR 150

DESCRIBE ANY DAMAGE TO VEHICLE PRIOR TO TEST:

NONE
7(3 S
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1 psi = 6.89 kPa

Figure 3. Vehicle properties for test 98F012.






DATE: 11-05-98 TEST NO: 98F014 TIRE PRESSURE: 35 psi MAKE : GEO

MODEL: METRO YEAR: 1997 ODOMETER : 33,000 . GVW: 827

TIRE SIZE: VIN NUMBER: 2C1MR2295V6745109 TREAD TYPE:

MASS DISTRIBUTION: CURB: LF, 270 LF 258 LR 144 RR 147
TEST INERTIAL: LF 275 RF 261 LR 146 RR 145

DESCRIBE BNY DAMAGE TO VEHICLE PRIOR TO TEST:

NONE
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Figure 4. Vehicle properties for test 98F014.






DATE: _ 11-23-98 TEST NO: 98F015 _ TIRE PRESSURE: _ 35 psi MAKE : GEO
MODEL: __METRQ YEAR: 1997 ODOMETER : avW: 834
TIRE SIZE: VIN NUMBER: 2C1MR2293V6757971 TREAD TYPE:
MASS DISTRIBUTION: CURB: LF__ 266 LF___ 263 LR 152 RR___ 142
TEST INERTIAL: LF___ 270 RF___ 264 LR___ 150 RR___ 150
DESCRIBE ANY DAMAGE TO VEHICLE PRIOR TO TEST:
NONE
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Figure 5. Vehicle properties for test 98F015.







DATE: 1-27-99 TEST NO: 995001 - TIRE PRESSURE: 35 psi MAKE : GEQ

MODEL: __ METRO YEAR: ___1997 ODOMETER : 33,000 GVW:___ 830 kg

TIRE SIZE: VIN NUMBER: 2C1MR2293V6727806 TREAD TYPE:

MASS DISTRIBUTION: CURB: LF 275 RF 252 LR 146 RR, 147
TEST INERTIAL: LF 274 RF 254 LR 151 RR 150

DESCRIBE ANY DAMAGE TO VEHICLE PRIOR TO TEST:

NONE
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1 psi = 6.89 kPa

Figure 6. Vehicle properties for test 99S001.
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INSTRUMENTATION

For each test, speed-trap, accelerometer, load-cell, and
high-speed film data were collected to measure frontal and side
crush characteristic data or force-deflection data of the 1997
Geo Metro.

Speed trap. For the five frontal impact tests, a speed trap
was used to determine each vehicle’s speed just prior to contact
with the rigid pole. The center of the speed trap was placed
approximately 3.7 m before the rigid pole. The speed trap
consisted of a set of five contact switches fastened to the
runway at 0.3-m intervals. As the vehicles passed over the
switches, electronic pulses were recorded on analog tape.

For the broadside crash test, a single micro switch was
fastened to the main FOIL side impact monorail at a location just
prior to when the vehicle exited the monorail. As the vehicle
passed over the switch, each wheel on the main side impact
guidance carriage closed the micro switch. The wheels of the
monorail carriage were spaced 1,015 mm apart. Two electronic
pulses from the micro switch closures were recorded on analog
tape. The monorail speed trap was used only to determine
monorail exit speed. The vehicle speed just prior to contacting
the rigid pole was determined from high-speed film.

Transducer data. The instrumentation used during the five
frontal impact tests consisted of the two load cells attached to
the rigid pole, a tri-axial accelerometer, and a tri-axial rate
transducer at the vehicle’s c.g. In addition to the pole and
c.g. instrumentation, the Geo Metros were instrumented as
described in Federal Motor Vehicle Safety Standard (FMVSS) 208.
The data from thée transducers were recorded by two data

acquisition systems: the DSPT onboard data acquisition system
" (ODAS III) and an umbilical cable tape recorder system. Table 3
describes the instrumentation used during the frontal crash
tests. A three dimensional sensor location is included in table
3. The location coordinates were referenced from the right-front
wheel hub, which was 265 mm above ground.

The c.g. instrumentation used during the broadside crash
test remained as in the frontal tests. However, the FMVSS 208
sensors were relocated. The sensors were positioned to acquire
data from locations more pertinent for broadside testing.
Accelerometers were affixed to the driver seat track, inside the
driver door, and to the passenger side roof and floor sills.
Table 4 summarizes the instrumentation used for the broadside
test. The sensor -locations are also included. Senor location
coordinates in table 4 were referenced from the right front wheel
hub (265 mm above ground).

The ODAS III is a self-contained system. The output from
the sensors was filtered, digitally sampled, and digitally stored
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within the ODAS units mounted directly to the test vehicle inside

the occupant compartment.

The ODAS units are factory set with a

4000-Hz analog filter and a digital sampling rate of 12,500 Hz.

FMVSS 208 accelerometer (vehicle component data),

c.g., and rate

transducer data were collected via the ODAS III system.

between vehicle transducers,

The FOIL umbilical cable system utilizes a 90-m cable
rigid pole lcocad cells, or other
sensors and a rack of signal conditioning amplifiers.

The output

from the amplifiers was recorded on 25-mm magnetic tape via a

Honeywell 5600E tape recorder.

After the test,

the tape is

played back through anti-aliasing filters, then input to a Data

Translation analog-to-digital converter (ADC).
was set to 5000 Hz.

The sample rate

The umbilical cable system recorded c.g.
acceleration data and rigid pole load-cell data.

Table 3.

Summary of instrumentation and channel assignments
for tests 98F010 through 98F015 (frontal tests).

ODAS III onboard data system

Ch | Transducer Maximum | Data Location*
range description (X,Y,2) mm

1 | Accelerometer 100 g Vehicle c.g., -819,782,106
X-axis

2 | Accelerometer 100 g Vehicle c¢.g., -819,782,106
Y-axis

3 Accelerometer 100 g Vehicle c.g., -819,782,106
Z-axis

4 | Accelerometer | 2000 g Top of engine, 277,684,490
X-axis

5 Accelerometer 2000 g Bottom of 115,757,-17
engine, X-axis

6 | Accelerometer 2000 g Left front 106,1390,26
caliper,Y-axis

7 Accelerometer 2000 g Right front 107,152,25
caliper,X-axis

8 Accelerometer 2000 g Instrument -396,773,652
panel, X-axis

9 Rate 500 °/s Pitch rate, -815,782,106

' transaucer c.g.

10 | Rate 500 °/s | Roll rate, c.g. -819,782,106

transducer
11 | Rate 500 °/s Yaw rate, c.g. -819,782,106
transducer ’
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Table 3.

Summary of instrumentation and channel assignments
for tests 98F010 through 98F015 (frontal tests)

(continued) .

Umbilical cable, tape recorder system.

1 Accelerometer 100 g Vehicle c.g., -819,782,106
X-axis
2 Accelerometer 100 g Vehicle c.g., -819,782,106
Y-axis
3‘ Accelerometer 100 g Vehicle c.g., -819,782,106
Z-axis
4 | Load cell 222 kN Pole force, X- 0,0,305*%*
axis
5 Load cell 222 ,kN Pole force, X- 0,0,1180%**
axis
11 | Contact 1.5V Time of impact, Not available
switch TO
12 } Contact 1.5V Runway speed Not available
switches trap
14 | Generator 1.5V 1 kHz reference Not available

signal

* Origin located at right front wheel hub (265 mm above ground)
**Vertical location only referenced from FOIL runway.

Table 4. Summary of instrumentation and channel assignments
for broadside crash test 99S001.

ODAS III onboard data system

Ch |} Transducer Maximum | Data Location*
range description (X,Y,Z) mm
1 | Accelerometer 100 g Vehicle c.g., -800,741,135
' ' X-axis
2 | Accelerometer 100 g Vehicle c.g., -800,741,135
: Y-axis
3 Accelerometer 100 g Vehicle c¢.g., -800,741,135
Z-axis
4 | Accelerometer 2000 g Top of engine, 295,712,470
X-axis
5 | Accelerometer 2000 g Top of engine, 295,712,470
Y-axis
6 Accelerometer 2000 g Driver seat, Y- ~-1030,1400,100
axis
7 Accelerometer 2000 g Rear axle, X- -1820,770,180
axis
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Table 4. Summary of instrumentation and channel assignments for
broadside crash test 995001 (continued).

8 | Accelerometer 2000 g Rear axle, Y- -1820,770,180
axis

9 | Accelerometer 2000 g right side -1030,171,110
floor

10 | Accelerometer 2000 g right side roof -1030,321,1000

11 | Rate transducer | 500 °/s | Pitch rate, -800,741,135
c.g.
12 | Rate transducer | 500 °/s | Roll rate, c.g. -800,741,135
13 { Rate transducer | 500 °/s | Yaw rate, c.g. -800,741,135
Umbilical cable, tape recorder system.
1 Accelerometer 100 g Vehicle c.g., -800,741,135
Y-axis

2 Accelerometer 100 g Vehicle c.g., -800,741,135

) Z-axis

3 Accelerometer 200 g Left door -1055,1620,315
outer-skin

4 Accelerometer 200 g Left door inner -1055,-1535,315
brace

5 Load cell 222 kN Pole force, X- 0,0,100*%*
axis

6 Load cell 222 kN Pole force, X- 0,0,470%%
axis

7 Load cell 222 kN Pole force, X- 0,0,650*%*
axis

8 Load cell 222 kN Pole force, X- 0,0,980%**
axis

9 Load cell 222 kN Pole force, X- 0,0,1170**
axis

10 | Load cell 222 kN Pole force, X- 0,0,1650*%*
axis

11 | Contact switch 1.5V Time of impact, Not applicable
TO

12 | Micro switch 1.5V Monorail speed Not applicable
trap

14 | Generator 1.5V 1 kHz reference Not applicable

signal

* Origin located at right front wheel hub (265 mm above ground)
**Vertical location only referenced from FOIL runway.
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High-speed photography. The crash tests were photographed
using five high-speed cameras with an operating speed of 500
frames/s. All high-speed cameras used Kodak 2253 daylight film.
The high-speed film was analyzed for impact speed and acceleration
data. In addition to the high-speed cameras, one real-time camera
loaded with Kodak 7239 daylight film and two 35-mm still cameras
were used to document the test. Table 5 summarizes the cameras
used and their respective placements. The camera numbers listed in
table 5 are shown in figures 11 and 12. The figures depict the
test facility layout for frontal and broadside rigid pole testing.

Table 5. Summary of camera placement.

Camera Type Film Lens Location

v speed {mm)
) ' frames/s

1 LOCAM II 500 75 Right 90° to impact
2 LOCAM II 500 50 Right 90° to impact
3 LOCAM II 500 50 | Right side 45° to impact
4 LOCAM II 500 50 Left side 45° to impact
5 LOCAM II 500 10 Overhead
6 BOLEX 24 ZOOM Documentary
7 CANNON AE-1 still ZOOM Documentary
8 CANNON AE-1 still ZOOM Documentary

DATA ANALYSIS

Data were collected via the FOIL analog tape recorder system,
including speed-trap data, the FOIL ODAS III onboard data system,
and high-speed film.

Speed trap. As the vehicles passed over the speed trap, tape
switches or lone micro switch (side impact), electronic pulses were
recorded to analog tape. The tape was played back through a Data
Translation ADC inside a desktop computer. The time between pulses
was then determined using the software provided with the ADC. For
frontal impacts, the time intervals between the first pulse and
each of the subsequent four pulses together with the distances
. between corresponding tape switches were entered into a computer
spreadsheet and a linear regression was performed to determine the
best-line fit of the data points. The impact velocity was then
determined from the slope of the best-line fit of the displacement
vs. time curve. For the broadside test, the monorail exit speed
was calculated by dividing the distance
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Figure 11. Camera placement and test setup for the five frontal
impact tests, tests 98F010 through 98F015.
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between carriage wheels (1,015 mm) by the time between two
electronic pulses recorded on magnetic tape.

Transducer data package. After the test, data from both data
systems were converted to digital format and stored. The digital
data from the tape recorder system and the ODAS III system were
converted to the ASCII format, the zero bias was removed, and the
data were digitally filtered using a digital Butterworth low-pass
filter. The data from the crash tests were digitally filtered with
a cutoff frequency of 300 Hz. The data were transferred to a
spreadsheet for analysis.

The longitudinal (lateral for side impact) c.g. acceleration
data were integrated twice to produce velocity and displacement
traces. A force vs. time trace was generated by multiplying the
acceleration data by the mass of the vehicle and plotting the
product vs. time. The crush profile data plots were generated by
plotting the force data with the displacement data. Integration of
the force vs. displacement data yielded an energy vs. displacement
trace. Acceleration vs. time traces were plotted for all FMVSS 208

accelerometers.

The load cells measured forces at two (frontal testing) or six
(broadside test) separate locations on the rigid pole. The forces
obtained were summed together to generate the entire force for the
event. Using the force vs. time trace, an acceleration trace was
produced by dividing the force vs. time trace by the mass of the
vehicle. Velocity and displacement traces were generated by a
single and double integration of the acceleration trace. A force
vs. displacement trace was generated from the load-cell data. The
force vs. displacement trace depicts the frontal crush
characteristic of a vehicle for the given impact location. An
energy vs. displacement trace was derived from integrating the
force vg. displacement trace. The energy curve verifies the
conservation of energy during the test and illustrates the amount
of energy consumed for a given amount of deformation.

The load cells measured the forces on the rigid pole at two
or six separate locations. Each pair of load cells was attached
to a single, common rigid pole impact face. Using torque
equations, a resultant load height on the rigid pole vs.
displacement (crush) was generated. This plot is important
because it depicts the location (height) on the vehicle that was
producing the load. The resultant load height wvaried as the
vehicle crushed inward. As contact between different structures
in the vehicle occurred, the resultant load's vertical location
shifted.

High-speed photography. Each crash event was recorded on 16-
mm film by five high-speed cameras. The film from the camera
perpendicular to the vehicle trajectory, with a 50-mm lens, was
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analyzed for initial vehicle velocity. The overhead camera film
was analyzed to determine vehicle displacement after contact,
which can be used to measure vehicle deformation. Analysis of
each crash event was performed using an NAC Film Motion Analyzer
model 160-F in conjunction with a desktop personal computer. The
motion analyzer digitized the 16-mm film, reducing the image to
Cartesian coordinates. The Cartesian coordinate data were then
imported into a computer spreadsheet for analysis. Using the
Cartesian coordinate data, a displacement vs. time history of each
test was obtained. A linear regression was performed on the first
20 data points of the displacement vs. time traces to determine
the vehicles’ impact velocities. The film was used to verify data
obtained from the speed trap and rate transducer and could be used
in the event of transducer malfunction. The film was used to
observe roll, pitch, and yaw angular displacements. The speed
trap, accelerometer, and load-cell data were the primary data
systems.

RESULTS

Each vehicle was accelerated to within 1.7 km/h of the
target impact speed (35 km/h) prior to striking the rigid pole.
The vehicles struck the rigid pole within +25 mm of the target
impact location.

. During each frontal test, different areas of the bumper,
grill, hood, and fenders deformed after contact. The total amount
of vehicle deformation varied depending on the vehicle
substructure and engine compartment components at the specific
impact location. Each vehicle rebounded away from the rigid pole
with a small negative velocity. During the crash tests where the
impact location was aligned with one of the front tires (98F010
and 98F015) the vehicles were unable to rebound as far or as fast
due to the fender and wheel-well deformation against the tire.
During contact with the rigid pole the vehicles rotated about the
impact location. The magnitude and direction of the yaw was
dependent on the distance between the vehicle centerline (lateral
c.g.) and the impact location and on which side of the vehicles’
centerline (left or right) the impact occurred.

For test 995001, the Geo Metro was placed on the side impact
monorail. The vehicle centerline was perpendicular to the rigid
pole centerline. Prior to test execution the area of runway in
front of the rigid pole was hosed down with water. This was done
to minimize tire friction and therefore minimize the roll angle of
the vehicle prior to striking the rigid pole. The wvehicle exited
the monorail at 38.8 km/h. The vehicle dropped from the monorail
with the two left tire contacting the runway first followed by the
right two tires. The vehicle slid across the wet runway and
struck the rigid pole at the intended impact location with an
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initial roll angle of 2.3° and an initial yaw angle of 90.0°. The
impact speed was determined from high-speed film and was based on
film analysis of the 15 frames (0.030 s) preceding contact with
the rigid pole. The measured impact speed was 34.2 km/h. The
vehicle slid into the pole with the driver door striking the pole
first. The cross-section of the door collapsed causing the window
to break. The floor-sill struck the pole and began to fold
inwards. The roof-sill made contact with the pole last and
buckled quickly, providing little resistance or stiffness. As the
vehicle continued to collapse, the front and rear of the vehicle
acted independently. The front and rear of the vehicle began to
wrap around the pole. The yaw angle of the front and rear
differed because the impact location essentially divided the
vehicle into two sections. The rate transducer mounted inside the
vehicle was located forward of the impact location and therefore
measured the yaw rate and angle of the vehicle’s front end. Data
from sensors located at the c.g., to include accelerometers and
rate transducers, may not accurately represent the event due to
the severe buckling of the vehicle floor pan and tunnel.

Table 6 summarizes the results from the six Geo Metro crash
tests. Table 7 and 8 list the peak values recorded by each sensor
for each of the five frontal impact tests and the one broadside
collision, respectively. Sketches of the test vehicles with
static deflection measurements are presented in Appendix A.
Photographs taken of the pre-test, during-test, and the post-test
environment for each test are presented in Appendix B. Appendix C
contains data plots of the data recorded by each sensor during
each test. Crush profile data plots are included in Appendix C.

CONCLUSIONS

The results indicate that electronic data and high-speed film
data were successfully recorded during six crash tests between Geo
Metros and the FOIL rigid pole. The electronic data and film
footage will aid computer simulation engineers to develop and
validate FEMs of the Geo Metro and models of crash tests between
Geo Metros and roadside safety devices.

The five frontal crash tests yielded crush profile data for
five different locations along the Geo Metros’ front end. One
impact location will be selected as the location that the FOIL
bogie vehicle’s nose will replicate. The current bogie nose was
modeled aftzr a 1979 Volkswagen Rabbit’s front left quarter point.
The bogie vehicle is currently used to evaluate the safety
performance of breakaway roadside safety hardware. Which
location to be modeled will be based on a worst-case approach
and/or guidance from NCHRP Report 350. The Geo Metro crush
profile data are summarized as three data plots in figures 13, 14,
and 15. These data plots were generated from load-cell data.
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Because of the severe vehicle deformation, crush profile data
plots used for this discussion were generated from the rigid pole
load cells rather than from the vehicle c.g. accelerometers.
Figure 13 helps illustrate the .worst-case approach. Given the
impact locations in tests 98F010 and 98F015, a roadside safety
device designed to break away at 150,000 N would produce an
occupant risk value (delta velocity value) higher than the
recommended value outlined in NCHRP Report 350 (5 m/s). The same
device would produce an occupant risk value lower than 5 m/s when
struck at the impact locations tested in tests 98F011, 98F012, and
98F014. Therefore it would be plausible that a roadside safety
device that met the safety performance criteria when tested by a
bogie vehicle modeled after tests 98F010 and/or 98F015 would also
meet the safety performance criteria in all frontal impact
scenarios. However, the standard safety performance evaluation
test outlined in NCHRP Report 350 is an 820C vehicle striking the
breakaway device on the vehicle centerline. Off-center crash
tests are considered optional for the high-speed test designations
. to observe possible vehicle instability induced by an off-center
collision. The nose of the bogie vehicle may be modeled after any
of the five tested locations; however, the nose is inserted into
the bogie vehicle frame along the bogie centerline and therefore
possible instability due to an off-center hit would not be
observed using the bogie vehicle. From this reasoning, the FOIL
bogie’s crushable nose should replicate the Geo Metro centerline
collision with the rigid pole.
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Table 7.

98F015 (frontal testing).

Summary of sensor output, maximum and minimum values for tests 98F010 through

ODAS III onboard data system

Test number 98F010 98F011 98F012 98F014 98F015
L. (+g) (-g) (+g) (-g) (+g) (-g) (+g) (-g) (+g) (-g)
Data description
Vehicle c.g., A, 4.5 43.5 9.8 41.1 9.2 58.2 5.6 37.2 3.6 30.3
Vehicle c.g., A, 9.8 18.7 8.7 15.3 17.2 16.9 15.9 9.3 15.0 10.6
Vehicle c.g., A, 16.6 18.8 | 24.5 50.8 1.2 1.7 12.5 23.6 16.8 11.6
Top of engine, A, 38.8 1 211.5| 23.6 190.4 59.8 587.7 28.0 354.0 12.8 295.0
Bottom engine, A, 27.8 37.2 1 15.5 48.5 63.5 64.2 22.8 60.9 26.3 35.3
Right front 33.3 68.2 9.3 52.7 8.2 63.4 8.6 59.4 27.8 82.6
caliper, A,
Left front 1345.8 | 535.1 12.1 87.6 8.9 47.1 8.7 50.7 25.8 46.9
caliper, A,
Instrument 33.9 55.4 9.2 53.3 35.1 70.5 NA 93.2 129.7 102.6
panel, A,
Umbilical cable, tape recorder system.
Vehicle c.g., A, 4.9 49.9 9.9 44 .8 5.8 63.8 8.5 39.0 3.0 - 31.6
Vehicle c.g., A, 8.7 16.7 8.1 13.2 12.5 <13.3 20.3 9.5 10.1 15.4
Vehicle ¢.g., A, 18.3 18.0 1] 23.9 41.51 20.0 42 .3 12 .4 19.8 16.3 10.7
Pole force, F, 2.4 1170.0 2.5 268.0 1.9 245.0 4.5 194.0 2.2 152.0
(1000 N)
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Table 7.

98F015 (frontal testing).

Summary of sensor output, maximum and minimum values for tests 98F010 through

ODAS III onboard data system

Test number 98F010 98F011 98F012 98F014 98F015
Data description (+g) (-g) | (+9) (-g) (+g) (-g) (+g) (-g) (+g) (-g)
Vehicle cg, A, 4.5 43.5 2.8 41.1 9.2 é9,2 5.6 37.2 3.6 30.3
Vehicle cg, A, 9.8 18.7 8.7 15.3 ] 17.2 16.9 | 15.9 9.3 15.0 10.6
Vehicle cg, A, 16.6 18.8 | 24.5 50.8 1.2 1.73 12.5 23.6 16.8 11.6
Top of engine, A, 38.8 | 211.5] 23.6 190.4 1 59.8 587.7 ] 28.0 354.0 12.8 295.0
Bottom engine, A, 27.8 37.2 | 15.5 48.5 | 63.5 64.2 ] 22.8 60.9 26.3 35.3
Right front 33.3 68.2 9.3 52.7 8.2 63.4 8.6 59.4 27.8 82.6
caliper, A,
Left front 1345.8 | 535.1 ¢ 192.1 87.6 8.9 47.1 8.7 50.7 25.8 46.9
caliper, A,
Instrument 33.9 55.4 9.2 53.3 1] 35.1 70.5 NA 83.2 129.7 102.6
panel, A,
Umbilical cable, tape recorder system.
Vehicle cg, A, 4.9 49.9 9.9 44 .8 5.8 63.8 8.5 39.0 3.0 31.6
Vehicle cg, A, 8.7 16.7 8.1 13.2] 12.5 13.3 1 20.3 9.5 10.1 15.4
Vehicle cg, A, 18.3 18.01] 23.9 41.51 20.0 42.34¢ 12.4 19.8 16.3 10.7
Pole force, F, 2.41170.0 2.5 268.0 1.9 245.0 4.5 194.0 2.2 152.0
(1000 N) )







Table 8. Summary of sensor output for test 995001 (broadside

test) .
ODAS III onboard data system
Data description Maximum
(+g) (-g9)
Vehicle c.g., X-axis 16.3 14.0
Vehicle c.g., Y-axis 12.6 26.6
Vehicle c.g., Z-axis 16.2 42.8
Top of engine, X-axis 7.9 10.0
Top of engine, Y-axis 2.2 18.8
.Driver seat, Y-axis 26.4 79.6
Rear axle, X-axis 23.0 19.9
Rear axle, Y-axis 27.4 20.2
Right side floor ' 2.7 14.9
Right side roof 0.9 7.4
Umbilical cable, tape recorder system.

Vehicle c.g., Y-axis 9.2 28.3
Vehicle c.g., Z-axis 6.4 43.9
Left door outer-skin 126.4 201.6
Left door inner brace 236.9 104.8
Pole force, X-axis (1000 N) 0.3 102.2

28







62

Peak Force vs. Delta Velocity
1997 Geo Metro
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Figure 13. Peak force vs. delta velocity, five frontal Geo Metro crash tests.
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. Figure 14. Force vs. displacement, five frontal Geo Metro crash tests.
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Figure 15. Energy vs. displacement, five frontal Geo Metro crash tests.
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APPENDIX A. VEHICLE CRUSH MEASUREMENTS
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Figure 16. Vehicle deformation sketch,
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Figure 17. Vehicle deformation sketch, test 98F011.
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Figure 18. Vehicle deformation sketch, test 98F012.
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Figure 19. Vehicle deformation sketch, test 98F014.
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Figure 20. Vehicle deformation sketch, test 98F015.
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Figure 21. Vehicle deformation sketch, test 99S001.
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Additional post-test photographs, fest 98F010.
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Figure 28.

Post-test photographs,

test 98FO011.
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Additional post-test photographs, test
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Figure 43.

Pre-test photographs, test 99S001.
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Figure 45.

Additional post-test photographs, test 995001.
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Figure 47. C.g. velocity vs. time, X-axis, test 98F010.
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Figure 50. C.g. energy vs. displacement, X-axis, test 98F010.
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Figure 51. C.g. acceleration vs. time, Y-axis, test 98F010.
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Figure 52. C.g. acceleration vs. time, Z-axis, test 98F010.
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Figure 53. Rigid pole, force vs. time, test 98F010.
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Figure 65. Pitch rate and angle vs. time, test 98F010.
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Figure 69. C.g. velocity vs. time, X-axis, test 98F011.
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Figure 79. Rigid pole, force vs. displacement, test 98F011.
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Figure 154. C.g. acceleration vs. time, Y-axis, test 99S001.
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Figure 155. C.g. velocity vs. time, Y-axis, test 99S001.
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Figure 156. C.g. displacement vs. time, Y-axis, test 99S001.
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Figure 160. C.g. acceleration vs. time, Z-axis, test 99S001.
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Figure 161. Rigid pole, force vs. time, test 995001.
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Figure 164. Rigid pole, displacement vs. time, test 99S001.
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Figure 167. Outer door-skin, acceleration vs. time, test 99S001.
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Passenger side floor-sill acceleration vs. time, Y-axis, test 998001.
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Figure 174. Acceleration vs. time, above rear axle, Y-axis, test 99S001.






16T

Acceleration (g’s)

Test No. 99S001

Acceleration above rear aoxle, X—oxis

25

20

18 -

10 -

5_
0 &$l 1! ﬂ .M ) " VPN, i WYY N
TV A VAV e

™ T
_5 h h
_o5 1 | 1 | 1 L
0 0.05 0.1 0.15 0.2 0.25 0.3
Time (s)

Figure 175. Acceleration vs. time, above rear axle, X-axis, test 99S001.
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Figure 176. Pitch rate and angle vs. time, test 99S001.
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Figure 178. Yaw rate and angle vs. time, test 99S001.
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